Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Pediatr Allergy Immunol Pulmonol ; 37(1): 33-36, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484269

RESUMO

Background: Autosomal recessive interleukin (IL)-12p40 deficiency is a genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD). It has been described in ∼50 patients, usually with onset at childhood with Bacille Calmette-Guérin (BCG) and Salmonella infections. Case Presentation: A male patient born to consanguineous parents was diagnosed with presumed lymph node MSMD at the age of 13 years after ocular symptoms. A positive history of inborn error of immunity was present: BCG reaction, skin abscess, and recurrent oral candidiasis. Abnormal measurements of cytokine levels, IL-12p40 and interferon-gamma (IFN-γ), lead to the diagnosis of MSMD. Genetic analysis showed a mutation in exon 7 of the IL12B gene. Currently, the patient is alive under prophylactic antibiotics. Conclusion: We report a rare case of IL-12p40 deficiency in a Latin American patient. Medical history was crucial for immune defect suspicion, as confirmed by precision diagnostic medicine tools.


Assuntos
Subunidade p40 da Interleucina-12 , Infecções por Mycobacterium , Humanos , Masculino , Criança , Subunidade p40 da Interleucina-12/genética , Brasil , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/genética , Mutação , Linfonodos
2.
J Clin Immunol ; 44(3): 62, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363432

RESUMO

PURPOSE: Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Twenty-two genes with products involved in the production of, or response to, IFN-γ and variants of which underlie MSMD have been identified. However, pathogenic variants of IFNG encoding a defective IFN-γ have been described in only two siblings, who both underwent hematopoietic stem cell transplantation (HCST). METHODS: We characterized a new patient with MSMD by genetic, immunological, and clinical means. Therapeutic decisions were taken on the basis of these findings. RESULTS: The patient was born to consanguineous Turkish parents and developed bacillus Calmette-Guérin (BCG) disease following vaccination at birth. Whole-exome sequencing revealed a homozygous private IFNG variant (c.224 T > C, p.F75S). Upon overexpression in recipient cells or constitutive expression in the patient's cells, the mutant IFN-γ was produced within the cells but was not correctly folded or secreted. The patient was treated for 6 months with two or three antimycobacterial drugs only and then for 30 months with subcutaneous recombinant IFN-γ1b plus two antimycobacterial drugs. Treatment with IFN-γ1b finally normalized all biological parameters. The patient presented no recurrence of mycobacterial disease or other related infectious diseases. The treatment was well tolerated, without the production of detectable autoantibodies against IFN-γ. CONCLUSION: We describe a patient with a new form of autosomal recessive IFN-γ deficiency, with intracellular, but not extracellular IFN-γ. IFN-γ1b treatment appears to have been beneficial in this patient, with no recurrence of mycobacterial infection over a period of more than 30 months. This targeted treatment provides an alternative to HCST in patients with complete IFN-γ deficiency or at least an option to better control mycobacterial infection prior to HCST.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Recém-Nascido , Humanos , Predisposição Genética para Doença , Interferon gama , Infecções por Mycobacterium/genética , Homozigoto
4.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569495

RESUMO

Inborn errors of immunity (IEI) are genetic disorders with extensive clinical presentations. They can range from increased susceptibility to infections to significant immune dysregulation that results in immune impairment. While IEI cases are individually rare, they collectively represent a significant burden of disease, especially in developing countries such as South Africa, where infectious diseases like tuberculosis (TB) are endemic. This is particularly alarming considering that certain high penetrance mutations that cause IEI, such as Mendelian Susceptibility to Mycobacterial Disease (MSMD), put individuals at higher risk for developing TB and other mycobacterial diseases. MSMD patients in South Africa often present with different clinical phenotypes than those from the developed world, therefore complicating the identification of disease-associated variants in this setting with a high burden of infectious diseases. The lack of available data, limited resources, as well as variability in clinical phenotype are the reasons many MSMD cases remain undetected or misdiagnosed. This article highlights the challenges in diagnosing MSMD in South Africa and proposes the use of transcriptomic analysis as a means of potentially identifying dysregulated pathways in affected African populations.


Assuntos
Infecções por Mycobacterium , Tuberculose , Humanos , África do Sul/epidemiologia , Predisposição Genética para Doença , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/genética , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/genética , Mutação , Fenótipo
5.
Front Immunol ; 14: 1135824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063912

RESUMO

Introduction: Mendelian susceptibility to mycobacterial disease (MSMD) is a rare inherited condition characterized by selective susceptibility to weakly virulent mycobacteria, such as substrains of the bacille Calmette-Guérin (BCG) vaccine and different environmental mycobacteria. Case presentation: A 7-year-old Sudanese boy was referred to the immunology clinic with a suspected diagnosis of MSMD. This followed multiple presentations with disseminated tuberculosis and typhoid fever. Genetic testing surprisingly revealed pathogenic homozygous variants in IL12RB1 Exon 9, c.913A>T (p. Lys305*) in both the patient and his father, with a completely healthy asymptomatic carrier mother who is not blood related to the patient's father. Conclusion: It is challenging to diagnose MSMD, especially in developing countries where health systems are poor and have limited resources. Family history and genetic tests may help in early MSMD treatment and avoiding disease complications.


Assuntos
Predisposição Genética para Doença , Infecções por Mycobacterium , Masculino , Humanos , Criança , Infecções por Mycobacterium/genética , Mutação , Vacina BCG , Pai , Receptores de Interleucina-12/genética
6.
Curr Opin Immunol ; 81: 102296, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36867972

RESUMO

Inborn errors of immunity (IEI) delineate redundant and essential defense mechanisms in humans. We review 15 autosomal-dominant (AD) or -recessive (AR) IEI involving 11 transcription factors (TFs) and impairing interferon-gamma (IFN-γ) immunity, conferring a predisposition to mycobacterial diseases. We consider three mechanism-based categories: 1) IEI mainly affecting myeloid compartment development (AD GATA2 and AR and AD IRF8 deficiencies), 2) IEI mainly affecting lymphoid compartment development (AR FOXN1, AR PAX1, AR RORγ/RORγT, AR T-bet, AR c-Rel, AD STAT3 gain-of-function (GOF), and loss-of-function (LOF) deficiencies), and 3) IEI mainly affecting myeloid and/or lymphoid function (AR and AD STAT1 LOF, AD STAT1 GOF, AR IRF1, and AD NFKB1 deficiencies). We discuss the contribution of the discovery and study of inborn errors of TFs essential for host defense against mycobacteria to molecular and cellular analyses of human IFN-γ immunity.


Assuntos
Infecções por Mycobacterium , Mycobacterium , Humanos , Interferon gama , Predisposição Genética para Doença , Infecções por Mycobacterium/genética , Genótipo
7.
J Clin Immunol ; 43(4): 756-768, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36662455

RESUMO

PURPOSE: Summarize the characteristics of a large cohort of BCG disease and compare differences in clinical characteristics and outcomes among different genotypes and between primary immunodeficiency disease (PID) and patients without identified genetic etiology. METHODS: We collected information on patients with BCG disease in our center from January 2015 to December 2020 and divided them into four groups: chronic granulomatous disease (CGD), Mendelian susceptibility to mycobacterial disease (MSMD), severe combined immunodeficiency disease (SCID), and gene negative group. RESULTS: A total of 134 patients were reviewed, and most of them had PID. A total of 111 (82.8%) patients had 18 different types of pathogenic gene mutations, most of whom (91.0%) were classified with CGD, MSMD, and SCID. CYBB was the most common gene mutation (52/111). BCG disease behaves differently in individuals with different PIDs. Significant differences in sex (P < 0.001), age at diagnosis (P = 0.013), frequency of recurrent fever (P = 0.007), and vaccination-homolateral axillary lymph node enlargement (P = 0.039) and infection severity (P = 0.006) were noted among the four groups. The CGD group had the highest rate of males and the oldest age at diagnosis. The MSMD group had the highest probability of disseminated infection (48.3%). The course of anti-tuberculosis treatment and the survival time between patients with PID and without identified genetic etiology were similar. CONCLUSION: Greater than 80% of BCG patients have PID; accordingly, gene sequencing should be performed in patients with BCG disease for early diagnosis. BCG disease behaves differently in patients with different types of PID. Patients without identified genetic etiology had similar outcomes to PID patients, which hints that they may have pathogenic gene mutations that need to be discovered.


Assuntos
Doença Granulomatosa Crônica , Infecções por Mycobacterium , Imunodeficiência Combinada Severa , Criança , Humanos , Masculino , População do Leste Asiático , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/epidemiologia , Doença Granulomatosa Crônica/genética , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/epidemiologia , Infecções por Mycobacterium/genética , Estudos Retrospectivos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/epidemiologia , Imunodeficiência Combinada Severa/genética , Feminino
8.
Mikrobiyol Bul ; 57(1): 83-96, 2023 01.
Artigo em Turco | MEDLINE | ID: mdl-36636848

RESUMO

Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare primary immune deficiency (PID). IL-12Rß1 deficiency is the most frequently observed of more than 16 genetic defects that have been identified for MSMD. Genetic and immunological tests are remarkable in the diagnosis of PID. In this study, it was aimed to determine the expression of IFN-γR1 and IL-12Rß1 in patients with MSMD, their relatives, and healthy individuals and to evaluate the importance of flow cytometry as a fast and reliable method in the diagnosis of MSMD. IFN-γR1 and IL-12Rß1 expression levels were analyzed in 32 volunteers including six patients, six relatives, and 20 healthy individuals. The normal range of IFN-γR1 and IL-12Rß1 levels among healthy individuals were determined. IL-12Rß1 expression level in lymphocytes was found to be low in one patient's relative, and less than 1% in three patients and in one patient's relative. It was observed that the IL-12Rß1 expression levels of the patient with STAT1 deficiency were increased compared to the healthy individuals. No difference was found in the expression levels of IFN-γR1 and IL-12Rß1 in one patient, but IFN-γR1 expression was decreased in one patient compared to healthy individuals. Our results show that the determination of IL-12Rß1 and IFN-γR1 deficiencies by flow cytometry can be used as a rapid and reliable method for the diagnosis of MSMD. The use of this method as a screening test will enable early diagnosis especially in patients whose genetic diagnosis has not been confirmed and clinically compatible with MSMD. In addition, it is thought that IL-12Rß1 and IFN-γR1 range data obtained from healthy individuals will be considered as a reference source in routine and research studies to be conducted with MSMD.


Assuntos
Predisposição Genética para Doença , Infecções por Mycobacterium , Receptores de Interferon , Receptores de Interleucina-12 , Humanos , Citometria de Fluxo , Mutação , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/genética , Receptores de Interleucina-12/genética , Receptores de Interferon/genética
9.
Asian Pac J Allergy Immunol ; 41(4): 372-378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33638623

RESUMO

BACKGROUND: Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency, caused by non-tuberculous mycobacteria or Bacillus Calmette-Guerin (BCG) vaccine and characterized by severe diseases in childhood. OBJECTIVE: In this study, we examined eight years followed-up 12 Turkish children with genetically proven MSMD and we tried to evaluate the survival rate with succesfull disease management, rate of consanguinity, molecular, cellular and clinical features of patients. In addition, we wanted to emphasize the importance of early diagnosis before administration of BCG vaccine in countries where this vaccine is routinely used. METHODS: Twelve patients diagnosed with molecular studies [IFNγR1 complete (n = 1), IFNγR2 partial (n = 3), IL12Rß1 (n = 6), NEMO (n = 1), STAT1 mutation (n = 1)] were included. RESULTS: Ten patients (83%) were born from consanguineous parents and frequency of family history for the primary immunodeficiency was 58% (n = 7). All the cases had been immunized with BCG vaccine (Mycobacterium bovis) due to lack of early diagnosis. Two patients had BCG-itis and four patients had "BCG-osis". Survival rate was 75% after successful disease management with antibiotics, anti-tuberculous agents and recombinant IFN-γ. CONCLUSIONS: It was concluded that MSMD must be differentiated from different forms of primary immunodeficiencies, so clinicians should be aware of MSMD especially in patients with BCG vaccine complications and non-tuberculous mycobacterial infection.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Humanos , Criança , Vacina BCG/efeitos adversos , Seguimentos , Infecções por Mycobacterium/genética , Mutação , Predisposição Genética para Doença
10.
J Clin Immunol ; 43(1): 123-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044171

RESUMO

Mendelian susceptibility to mycobacterial disease (MSMD) is a rare genetic disorder characterized by impaired immunity against intracellular pathogens, such as mycobacteria, attenuated Mycobacterium bovis-Bacillus Calmette-Guérin (BCG) vaccine strains, and environmental mycobacteria in otherwise healthy individuals. Retrospective study reviewed the clinical, immunological, and genetic characteristics of patients with MSMD in Mexico. Overall, 22 patients diagnosed with MSMD from 2006 to 2021 were enrolled: 14 males (64%) and eight females. After BCG vaccination, 12 patients (70%) developed BCG infection. Furthermore, 6 (22%) patients developed bacterial infections mainly caused by Salmonella, as what is described next in the text is fungal infections, particularly Histoplasma. Seven patients died of disseminated BCG disease. Thirteen different pathogenic variants were identified in IL12RB1 (n = 13), IFNGR1 (n = 3), and IFNGR2 (n = 1) genes. Interleukin-12Rß1 deficiency is the leading cause of MSMD in our cohort. Morbidity and mortality were primarily due to BCG infection.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Masculino , Feminino , Humanos , Estudos Retrospectivos , Vacina BCG , Predisposição Genética para Doença , México/epidemiologia , Receptores de Interleucina-12/genética , Infecções por Mycobacterium/epidemiologia , Infecções por Mycobacterium/genética
11.
J Clin Immunol ; 43(2): 466-478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336768

RESUMO

PURPOSE: Heterozygous dominant-negative (DN) STAT1 variants are responsible for autosomal dominant (AD) Mendelian susceptibility to mycobacterial disease (MSMD). In this paper, we describe eight MSMD cases from four kindreds in Japan. METHODS: An inborn error of immunity-related gene panel sequencing was performed using genomic DNA extracted from whole blood samples. The identified variants were validated using Sanger sequencing. Functional analysis was evaluated with a luciferase reporter assay and co-transfection assay in STAT1-deficient cells. RESULTS: Patient 1.1 was a 20-month-old boy with multifocal osteomyelitis and paravertebral abscesses caused by Mycobacterium bovis bacillus Calmette-Guérin (BCG). Although the paravertebral abscess was refractory to antimycobacterial drugs, the addition of IFN-γ and drainage of the abscess were effective. Intriguingly, his mother (patient 1.2) showed an uneventful clinical course except for treatment-responsive tuberculous spondylitis during adulthood. Patient 2.1 was an 8-month-old boy with lymphadenopathy and lung nodules caused by BCG. He responded well to antimycobacterial drugs. His mother (patient 2.2) was healthy. Patient 3.1 was a 11-year-old girl with suspected skin tuberculosis. Her brother (patient 3.2) had BCG-osis, but their mother (patient 3.3) was healthy. Patient 4 was an 8-month-old girl with left axillary and supraclavicular lymphadenopathy associated with BCG vaccination. Kindreds 1, 2, and 3 were shown to have novel heterozygous variants (V642F, R588C, and R649G) in STAT1, respectively. Kindred 4 had previously reported heterozygous variants (Q463H). A luciferase reporter assay in STAT1-deficient cells followed by IFN-γ stimulation confirmed that these variants are loss-of-function. In addition, with co-transfection assay, we confirmed all of these variants had DN effect on WT STAT1. CONCLUSION: Four kindred MSMD subjects with 3 novel variants and 1 known variant in STAT1 were identified in this study. AD STAT1 deficiency might be prevalent in Japanese patients with BCG-associated MSMD.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Masculino , Feminino , Humanos , Adulto , Lactente , Criança , Abscesso , Vacina BCG , População do Leste Asiático , Mutação , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/genética , Antibacterianos , Predisposição Genética para Doença , Fator de Transcrição STAT1/genética
12.
Front Cell Infect Microbiol ; 12: 1002140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339330

RESUMO

Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital immune deficiency characterized by susceptibility to weakly virulent mycobacteria. Loss-of-function (LOF) mutation of signal transducer and activator of transcription 1 (STAT1) is one of the common genetic causes of MSMD. In this study, we identified a patient who presented with multiple lymph node enlargements and multiple osteolytic disruptions. Mycobacterium gordonae infection was confirmed by metagenomic next-generation sequencing. Whole-exome sequencing identified a novel paternal heterozygous mutation in exon 22 of STAT1 (NM_007315.4, c.1892T>C, p.Val631Ala). This variant was confirmed pathogenic by multiple software predictions. Based on functional assays, STAT1 expression in STAT1V631A cells was not different from STAT1WT cells. But STAT1V631A mutation caused much lower activation of STAT1 when stimulated by interferon-γ (IFN-γ). Fluorescence localization analysis revealed that both STAT1V631A and STAT1WT proteins were located in the cytoplasm, and only a few STAT1V631A proteins were translocated to the nucleus in response to IFN-γ. These results suggest that STAT1V631A leads to LOF in IFN-γ-mediated mycobacterial immunity, resulting in MSMD. Treatment with antibiotics has achieved ideal disease control for this patient, and no adverse events occurred during follow-up. The STAT1 LOF deficiency is a genetic cause of MSMD, which should be considered in patients with mycobacterial disease, especially those with bone involvement.


Assuntos
Infecções por Mycobacterium , Mycobacterium , Humanos , Predisposição Genética para Doença , Infecções por Mycobacterium/genética , Mutação , Interferon gama/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
13.
Front Immunol ; 13: 888427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159783

RESUMO

Purpose: Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/ß and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods: We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results: Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion: Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Mycobacterium , Mycobacterium , Herpesvirus Humano 4/genética , Humanos , Interferon-alfa/farmacologia , Interferon beta , Interferon gama/genética , Janus Quinase 1/genética , Mycobacterium/genética , Infecções por Mycobacterium/genética , RNA Interferente Pequeno , Receptores de Citocinas
14.
Eur J Dermatol ; 32(4): 495-504, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069176

RESUMO

Background: Inborn errors of IL-12/IL-23-IFNγ immunity underlie Mendelian susceptibility to mycobacterial diseases (MSMD), a group of immunodeficiencies characterized by a highly selective susceptibility to weakly virulent strains of mycobacteria, such as non-tuberculous mycobacteria (NTM) and bacillus Calmette-Guérin (BCG). Cutaneous mycobacterial infections are common in MSMD and may represent a red flag for this immunodeficiency. Objectives: We present a case series of four paediatric patients with MSMD, specifically with IFNγR1 and STAT1 deficiencies, and cutaneous NTM/BCG infections to increase awareness of this immunodeficiency, which may, in some cases, be intercepted by the dermatologist and thus timely referred to the immunologist. Materials & Methods: Clinical, laboratory and genetic investigations of the four paediatric patients with MSMD are presented. Results: All four presented patients experienced early complications after BCG vaccination. Two patients suffered recurrent mycobacteriosis, one patient experienced delayed BCG reactivation, and one patient died of disseminated avian mycobacteriosis. The dermatological manifestation in these patients included destructive nasal ulcerations, scrofuloderma of various sites and lupus vulgaris. All patients had a normal basic immune phenotype. Conclusion: The presented cases demonstrate that NTM/BCG infections in otherwise seemingly immunocompetent patients should raise suspicion of MSMD. This is of utmost importance as specific therapeutic approaches, such as IFNγ treatment or haematopoietic stem cell transplantation, may be employed to improve the disease outcome.


Assuntos
Síndromes de Imunodeficiência , Infecções por Mycobacterium , Dermatopatias Bacterianas , Vacina BCG/efeitos adversos , Predisposição Genética para Doença , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Interferon gama , Interleucina-12 , Interleucina-23 , Infecções por Mycobacterium/genética
15.
J Clin Immunol ; 42(8): 1778-1794, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35976469

RESUMO

PURPOSE: Mutations in signal transducer and activator of transcription 1 (STAT1) cause a broad spectrum of disease phenotypes. Heterozygous STAT1 loss-of-function (LOF) mutations cause Mendelian susceptibility to mycobacterial diseases (MSMD) infection, which is attributable to impaired IFN-γ signaling. The identification of novel mutations may extend the phenotypes associated with autosomal dominant (AD) STAT1 deficiency. METHODS: Five patients with heterozygous STAT1 variations were recruited and their clinical and immunologic phenotypes were analyzed, with particular reference to JAK-STAT1 signaling pathways. RESULTS: Four, heterozygous STAT1 deficiency mutations were identified, three of which were novel mutations. Two of the mutations were previously unreported mRNA splicing mutations in AD STAT1-deficient patients. Patients with heterozygous STAT1 deficiency suffered not only mycobacterial infection, but also intracellular non-mycobacterial bacterial infection and congenital multiple malformations. AD-LOF mutation impaired IFN-γ-mediated STAT1 phosphorylation, gamma-activated sequence (GAS), and IFN-stimulated response element (ISRE) transcription activity and IFN-induced gene expression to different extents, which might account for the diverse clinical manifestations observed in these patients. CONCLUSION: The infectious disease susceptibility and phenotypic spectrum of patients with AD STAT1-LOF are broader than simply MSMD. The susceptibility to infections and immunological deficiency phenotypes, observed in AD-LOF patients, confirms the importance of STAT1 in host-pathogen interaction and immunity. However, variability in the nature and extent of these phenotypes suggests that functional analysis is required to identify accurately novel, heterozygous STAT1 mutations, associated with pathogenicity. Aberrant splice of STAT1 RNA could result in AD-LOF for STAT1 signaling which need more cases for confirmation.


Assuntos
Infecções por Mycobacterium , Humanos , Heterozigoto , Infecções por Mycobacterium/genética , Fenótipo , Fator de Transcrição STAT1/metabolismo , Mutação com Perda de Função , Predisposição Genética para Doença
16.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35833912

RESUMO

Anti-interferon (IFN)-γ autoantibodies (AIGAs) are a pathogenic factor in late-onset immunodeficiency with disseminated mycobacterial and other opportunistic infections. AIGAs block IFN-γ function, but their effects on IFN-γ signaling are unknown. Using a single-cell capture method, we isolated 19 IFN-γ-reactive monoclonal antibodies (mAbs) from patients with AIGAs. All displayed high-affinity (KD < 10-9 M) binding to IFN-γ, but only eight neutralized IFN-γ-STAT1 signaling and HLA-DR expression. Signal blockade and binding affinity were correlated and attributed to somatic hypermutations. Cross-competition assays identified three nonoverlapping binding sites (I-III) for AIGAs on IFN-γ. We found that site I mAb neutralized IFN-γ by blocking its binding to IFN-γR1. Site II and III mAbs bound the receptor-bound IFN-γ on the cell surface, abolishing IFN-γR1-IFN-γR2 heterodimerization and preventing downstream signaling. Site III mAbs mediated antibody-dependent cellular cytotoxicity, probably through antibody-IFN-γ complexes on cells. Pathogenic AIGAs underlie mycobacterial infections by the dual blockade of IFN-γ signaling and by eliminating IFN-γ-responsive cells.


Assuntos
Infecções por Mycobacterium , Receptores de Interferon , Anticorpos Monoclonais , Autoanticorpos , Impedância Elétrica , Humanos , Interferon gama , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/microbiologia , Receptores de Interferon/genética
17.
PLoS Pathog ; 18(7): e1010602, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797343

RESUMO

Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.


Assuntos
Bacteriófagos , Micobacteriófagos , Infecções por Mycobacterium , Mycobacterium , Bacteriófagos/genética , Genoma Viral , Humanos , Micobacteriófagos/genética , Mycobacterium/genética , Infecções por Mycobacterium/genética , Mycobacterium smegmatis/genética
18.
BMC Vet Res ; 18(1): 148, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461250

RESUMO

BACKGROUND: This study aimed to characterize recent Mycobacterium bovis/M. caprae isolates from Bulgaria by whole-genome sequencing (WGS) to gain a first insight into their molecular diversity, transmission, and position within the global phylogeography of this important zoonotic species. RESULTS: The isolates were obtained from cattle in diverse locations of Bulgaria in 2015-2020 and were identified by microbiological and PCR assays. WGS data were used for phylogenetic analysis that also included M. bovis global dataset. Thirty-seven M. bovis/caprae isolates from Bulgaria were studied and 34 of them were SNP genotyped. The isolates were subdivided into 3 major phylogenetic groups. Type Mbovis-13 (Eu2 complex [western Europe and northern Africa]) included one isolate. Mbovis-37 type included 5 isolates outside of known clonal complexes. The Bulgarian M. caprae isolates formed a sub-group within the Mcaprae-27B cluster which also included 22 M. caprae isolates from Poland, Spain, Germany, and the Republic of Congo. The Bulgarian M. caprae isolates share their latest common ancestors with Spanish isolates. The Mbovis-37 group shares a distant common ancestor (pairwise distance 22-29 SNPs) with an isolate from Poland but was very distant (> 200 SNPs) from the rest of the tree. The Mbovis-13 group shares a common ancestor with two human isolates from Germany. Phylogeographically, both M. bovis clades had limited circulation in northeastern Bulgaria while the majority of the studied isolates (M. caprae) were from central and western provinces. A phylogenetic network-based analysis demonstrated that 11 Bulgarian isolates were separated by 1 to 6 SNPs within four clusters, mostly forming pairs of isolates. CONCLUSION: The obtained WGS analysis positioned the Bulgarian isolates within the global phylogeography of M. bovis/M. caprae. Hypothetically, the observed phylogenetic diversity may not have resulted from livestock trade routes, but instead may reflect the deeply rooted M. bovis/M. caprae phylogeography of Europe. A high level of genetic divergence between the majority of the studied isolates suggests limited active transmission of bTB in Bulgaria during the survey period. At the same time, a possibility of the endemic presence of circulating bTB strains in the form of the latent persistent disease cannot be ruled out.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Animais , Bulgária , Bovinos , Infecções por Mycobacterium/genética , Mycobacterium bovis/genética , Filogenia , Filogeografia , Sequenciamento Completo do Genoma/veterinária
19.
Clin Microbiol Infect ; 28(11): 1429-1434, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35283318

RESUMO

BACKGROUND: Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by a selective predisposition to infections caused by intracellular pathogens, such as mycobacteria, due to impaired IFN-γ immunity. To date, 18 different genes associated with MSMD have been reported. OBJECTIVES: This review describes recent discoveries, a 2020-2021 update, in MSMD through the introduction of three novel genetic disorders, namely, AR IFN-γ, T-bet, and ZNFX1 complete deficiency, as well as molecular mechanisms underlying multifocal osteomyelitis in patients with this condition. SOURCES: PubMed databases were searched for reports of MSMD since January 2020. Relevant articles and their references were screened. CONTENT: The review covers a general overview, known genes, classifications, symptoms, and treatments for MSMD. MSMD is classified into two groups: isolated MSMD and syndromic MSMD. Among the 18 genes responsible, 13 cause isolated MSMD, which is characterized by selective predisposition to one or more mycobacterial and related infections, and 8 cause syndromic MSMD, which involves the combination of the mycobacterial disease infectious phenotype with additional clinical phenotypes. Among the three genetic etiologies described herein, AR IFN-γ deficiency is classified as isolated MSMD, whereas AR T-bet and ZNFX1 deficiency are classified as syndromic MSMD. Multifocal osteomyelitis is a representative symptom of MSMD, and a high frequency of multifocal osteomyelitis is reported in MSMD patients due to impaired IFN-γ responses, such as with AD IFN-γR1, AD IFN-γR2, or AD STAT1 deficiency. Impaired inhibition of osteoclast differentiation and bone resorption owing to a poor response to IFN-γ has been shown to be in association with multifocal osteomyelitis in MSMD. IMPLICATIONS: Over the past decade, genetic dissection by next-generation sequencing techniques has contributed to the understanding of the molecular bases of human immunity to mycobacteria. However, genetic etiologies are lacking for half of MSMD cases. Further studies will be needed to elucidate the pathogenesis of MSMD.


Assuntos
Infecções por Mycobacterium , Mycobacterium , Osteomielite , Humanos , Predisposição Genética para Doença , Infecções por Mycobacterium/genética , Mycobacterium/genética , Interferon gama/genética , Osteomielite/genética , Mutação
20.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163035

RESUMO

Cytokine receptors are critical regulators of the antimycobacterial immune response, playing a key role in initiating and coordinating the recruitment and activation of immune cells during infection. They recognize and bind specific cytokines and are involved in inducing intracellular signal transduction pathways that regulate a diverse range of biological functions, including proliferation, differentiation, metabolism and cell growth. Due to mutations in cytokine receptor genes, defective signaling may contribute to increased susceptibility to mycobacteria, allowing the pathogens to avoid killing and immune surveillance. This paper provides an overview of cytokine receptors important for the innate and adaptive immune responses against mycobacteria and discusses the implications of receptor gene defects for the course of mycobacterial infection.


Assuntos
Mutação , Infecções por Mycobacterium/imunologia , Receptores de Citocinas/metabolismo , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Humanos , Imunidade Inata , Infecções por Mycobacterium/genética , Receptores de Citocinas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...